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of information exchange. The report is funded, partially or entirely, by a grant from the U.S. 
Department of Transportation’s University Transportation Centers Program. However, the U.S. 
Government assumes no liability for the contents or use thereof. 

ABSTRACT 
As the demand for curb parking increases and new types of curb space users compete for space, 
the need to more effciently manage how vehicles interact with the curb becomes more apparent. 
One solution is to allow curb space users to submit a reservation ahead of their arrival that can 
be centrally managed and scheduled if the resources are available. To study the potential benefts 
and drawbacks of an intelligently managed curb, we develop a dynamic parking reservation sys-
tem that continually collects parking requests from delivery and private vehicles and re-optimizes 
the schedule of accepted parking requests periodically throughout the day. This process employs 
model predictive control (MPC) to iteratively apply a mixed integer linear programming parking 
slot assignment optimization formulation adapted from prior literature. In our preliminary results 
we observe that our MPC algorithm can reduce computation cost and provide tractable parking 
schedules, which is not often possible with complex day-ahead optimal schedule generation. Ad-
ditionally, we compare the reduction in total minutes of double parking and cruising between a 
frst-come frst-serve (FCFS) paradigm and our MPC algorithm. We preliminarily observe that the 
MPC algorithm can reduce double parking and cruising under some conditions, but correlations 
between request time and dwell time lead to cases where dynamically optimized reservations can 
increase double parking and cruising relative to FCFS. We intend to further explore and character-
ize conditions under which reservation systems improve parking metrics in future research. 

Keywords: Smart Curbspace, Model Predictive Control, Dynamic Parking Reservations, Mixed 
Integer Linear Program 
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INTRODUCTION 
Competition for curb space parking is a growing concern for cities due to increasing demand from 
delivery companies, private vehicles, and transportation network companies (TNCs), among others 
(1–5). Unfortunately, ineffective curb management can result in additional congestion, emissions, 
and safety issues when vehicles unable to fnd a parking space either “cruise” in search of another 
location or double park adjacent to an occupied space and block a lane of traffc as noted by 
Jaller (6). Several researchers have further explored and studied vehicle “cruising” (7–11) and the 
negative impacts of double parking (12–16). 

A possible solution to more effectively use curb space is a technology concept known as 
“Smart Curbspace” which broadly envisions an intelligently managed curb parking space system. 
One version of a “Smart Curbspace” system which consists of an optimized reservation schedule 
for delivery vehicles based on day-ahead parking requests was characterized by Burns et al. (12) 
and a representation of the system borrowed from the authors is shown in Figure 1. The authors 
uncovered a range of impacts from zero beneft to over $300,000 in energy and congestion related 
savings per year per parking space due to a reduction in minutes of double parked vehicles. 

FIGURE 1: A Smart Curbspace system allows for optimized scheduling of delivery vehicle ar-
rivals to parking spaces which has the potential to reduce the traffc congestion caused by uncoor-
dinated, frst-come frst-serve delivery vehicles and double parking. Figure taken from Burns et al. 
(12). 

In this research we explore the performance of a dynamic reservation system when com-
pared with a frst-come frst-serve (FCFS) paradigm while considering uniquely characterized 
parking requests for different types of parking space customers. To create a dynamic real-time op-
timal curbspace reservation management system, we expand on the formulation in Burns et al. (12) 
and apply the principles of model predictive control (MPC) to iteratively solve many, but smaller 
optimal schedules. Periodically solving parking schedules also allows for the incorporation of new 
parking requests instead of assuming all requests will be placed a day-ahead as in Burns et al. (12). 
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Dynamic requests may also be more relevant for mixed-use spaces. To explore this idea we include 
vehicle parking requests typical of both private passenger vehicles and delivery vehicles. 

After exploring 9,000 cases, we preliminarily observe that the MPC algorithm can have 
both benefcial and negative impacts on the total minutes of double parking and cruising when 
compared with a frst-come frst-serve paradigm. The cases with negative impacts are primarily 
present for double parking and are likely due to correlations between request time and dwell time 
present in the data used to generated test scenarios. We plan to investigate the impact of parking 
assignment lead time in our future research. We also preliminarily observe a mostly homogeneous 
impact of the multi-objective function weights on the reduction of double parking and cruising 
i.e. a similar impact to double parking regardless of how we prioritize vehicles assignments based 
on their expected double parking or cruising behavior, suggesting our weighting values have in-
suffcient fdelity. An updated assessment will be provided in future research after studying both 
smaller values of parking assignment lead time as well as a large set of objective weights. 

Finally, we also preliminarily observe that the MPC algorithm is more computationally 
tractable than the full day optimal formulation across a normalized measure of parking space de-
mand. This behavior is expected as the MPC conducts many less complex and faster optimization 
formulations which can be iteratively completed, whereas a single full day formulation may be 
very complex and require a substantially longer compute duration. 

LITERATURE REVIEW 
Model Predictive Control (MPC) Methods for Incorporating Dynamic Parking Requests 
Our research seeks to study performance improvements from a dynamic optimal curbspace reser-
vation management system when applied to a diverse set of parking space customers. We defne 
a dynamic optimal system as a process which incorporates an iterative decision making behavior, 
or more specifcally is based on model predictive control (MPC) principles. The MPC process 
generally contains the following steps, 1) understand the status of the system at the current time 
step, 2) have a model to predict future performance of the system over an upcoming time horizon, 
3) update key variables such that the predicted performance approaches the intended behavior, 4) 
repeat this process at the next time interval with a new time horizon (17). An early survey of MPC 
techniques is available in Garda et al. (17). 

In reviewing the literature relevant, several methods, including optimization, simulation, 
and machine learning, address portions of our research question, however none capture all of 
our elements. Common across all identifed research however is an iterative mechanism which 
approximates MPC principles. A summary of the relevant methods and characteristics is shown in 
Table 1. 

The optimization studies from Table 1 generally employ a repetitive process where the 
optimal algorithm is resolved periodically and can incorporate updated vehicle and parking infor-
mation. Also common across most studies is an objective function which minimizes total travel 
distance which can include vehicle driving/cruising and walking time. 

The studies which most closely apply MPC principles include Zhao et al. (18), Mladenović 
et al. (19), and Hakeem et al. (20) primarily due to their models’ ability continually update park-
ing assignment prior to arrival. Zhao et al. (18) develops the D2Park: Diversifed demand-Aware 
on-street parking guidance process which combines machine learning-based parking demand pre-
diction methods with an ILP optimization formulation for aligning parking requests with available 
parking spaces. The authors follow MPC principles by periodically updating parking demand and 
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Dynamic Parking Reservation Studies 
(based on MPC Principles) 

Author (Year) Method Types of Vehicles Metrics 

Our Paper O (MILP)* Delivery, Private 
reduction in surrounding vehicle travel time 
due to double parking and cruising 

Zhao (2020) ML* + O (ILP)* Not Specifed 
extra driving time (cruising), walking time, 
the sum of which is delay time 

Mladenovic (2021) O (ILP)* Not Specifed 
driving time, walking distance, parking request fulfllment; 
proxy for cruising duration, utilization of parking lots 

Chen (2015) O (ILP) Not Specifed 
average social cost (weighted combo of 
cruising time and walking time), average revenue 

Mejri (2016) O (ILP) + SA Not Specifed (SUMO-based) 
parking space occupancy rate; request fulfllment; 
walking distance 

Hakeem (2016) O (ILP)* Not Specifed (SUMO-based) total travel time (driving and walking) 
Errousso (2021) O (ILP) + GA Delivery, Private total walking distance; number of fulflled requests 
Letnik (2018) DES Delivery total travel; CO2 emissions; fuel consumption 
Carvalho (2017) DES Private total system travel time 
Comi (2018) DES Delivery time in queue, number of vehicles in the queue 

Zhang (2022) ML Working, Shopping, Visiting 
total travel time (cruising and walking), 
parking lot occupancy 

*closely aligns with MPC principles 
O = Optimization 
MILP = Mixed Integer Linear Program 
ML = Machine Learning 
ILP = Integer Linear Program 
SA = Simulated Annealing 
GA = Genetic Algorithm 
DES = Discrete Event Simulation 

TABLE 1: A summary of studies which explored dynamic parking reservation systems across 
optimization, simulation, and machine learning methods. 

subsequently reassessing guidance for vehicles throughout the scenario. Zhao et al. (18) most no-
tably observe that the average total delay time (cruising + walking time) with D2Park decreases by 
33% when compared with a “No Guidance” greedy parking space search algorithm. Mladenović 
et al. (19) also closely adheres to MPC principles with their “Dynamic Parking Allocation Problem 
(DPAP)” formulation which sequentially executes an integer programming model (21) to achieve 
near real-time updates for parking space assignment. The integer program seeks to minimize total 
travel time (driving and walking time) given a set of parking requests with initial positions and 
desired destinations, but the authors do not consider this to be a reservation based formulation. 
Instead, the authors maintain the ability to update vehicle to parking space assignment up to vehi-
cle arrival which may change based on new parking requests and updated vehicle positions. The 
vehicles are then formally assigned a parking space when they arrive to their allocated location. 
Hakeem et al. (20) developed the Free Parking System (FPS) which implements an integer pro-
gramming optimization model to assign vehicles to geographically disperse parking spaces while 
minimizing the total travel time for all of the vehicles including driving and walking time. Similar 
to Mladenović et al. (19) this model also incorporates a minimum distance between the vehicle 
an its destination before a parking space is assigned. This allows for relevant parking requests to 
be considered in the optimization algorithm along with the most up to date parking availability 
information for the vehicle approaching its destination. 
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Several additional optimization studies also iteratively solve vehicle parking assignments 
based on updated vehicle and parking information, but tend to lock in reservations early and are less 
fexible at future time steps. Mejri et al. (22) develop the Reservation-based multi-Objective SmArt 
Parking (ROSAP) process which solves an integer linear program and is aided by a simulated an-
nealing heuristic. Their multi-objective model considers walking distance, travel distance to end 
destination at the time of the request and a parking congestion impact variable based on parking 
demand of the destination. They fnd that ROSAP results in higher parking space occupancy and a 
larger percentage of requests fulflled than a greedy method at the expense of slightly longer walk-
ing distances. Errousso et al. (23) and Errousso et al. (24) describe different iterative approaches to 
assigning vehicles to parking spaces. Errousso et al. (23) applies a fuzzy logic method composed 
of two phases which determine vehicle assignment and a third deconfiction phase. Errousso et al. 
(24) leverage the parking space allocation based on demand phase from Errousso et al. (23) and 
develops two integer linear programming models for specifc vehicle assignment. Errousso et al. 
(24) also has many unique considerations including, the size the vehicle and parking space, the 
amount of cargo being transported, a method to differentiate private and commercial vehicle park-
ing requests, and the probability that an assigned parking space will be available upon arrival. Both 
studies show a reduction in total walking distance and an increase in the quantity of fulflled park-
ing requests based on 10 or 15 minutes between executing the assignment algorithm. Additionally, 
Chen et al. (25) iteratively resolve their optimization formulation with an objective of minimizing 
total travel time which includes driving and walking distance. Instead of specifying a specifc time 
between each optimization run however, the authors focus on the total number of re-optimizations 
over the scenario and conduct numerical experiments between 1 and 100 intervals. They fnd the 
total travel time is generally less than a frst-come frst-serve scenario with their model and that the 
extent of the improvement is dependent on the number of time intervals considered. 

Simulation methods are often structured around discrete events, such as a vehicle submit-
ting a parking request, which enables an iterative, dynamic and “MPC-like” process of assign-
ing parking spaces given the opportunity to incorporate updated parking availability information. 
However, if the parking assignment is made as soon as the request is received, then the simula-
tion cannot chose between multiple new requests to select the best option. Optimization models 
however can collect new incoming requests over a period of time before making assignments. For 
example, Comi et al. (26) and Comi et al. (27) discusses an intelligently managed parking system 
for delivery vehicles (DynaLOAD) which includes a reservation process. The authors implement 
their system as a discrete event simulation where each new parking request is assessed and assigned 
a parking space based on the current scenario assignment paradigm, e.g. drive to the nearest park-
ing space and if the space is occupied, go to the next closest space, etc. The authors fnd that their 
system can reduce the number of vehicles waiting for parking and their time in the queue. The 
authors also consider the queues that form while waiting for parking and double parked vehicles, 
but they do not address the impact of the surrounding resulting traffc congestion. Letnik et al. 
(28) also creates a simulation which frst optimizes the location of loading bays based on delivery 
destinations with fuzzy k-means clustering and then assigns delivery vehicles to either the most 
convenient bay or from a set of alternative bays if the best bay is occupied. This can be considered 
a dynamic reservation-based model because parking space availability is updated when the parking 
requests are processed and under certain paradigms, the system can choose from set of possible 
parking locations. The output metrics of the model focus on delivery vehicle parameters such as 
total travel time and distance and resulting CO2 emissions and fuel consumption along with total 
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waiting time outside of the city until a parking space is available. The authors do not model for 
the congestion impact of double parked vehicles or vehicles cruising in search of a parking space. 
Carvalho e Ferreira and de Abreu e Silva (29) develops a different discrete event simulation to 
assess the impact of a parking reservation system on total system travel time while incorporating 
cruising vehicle behavior. Based on empirical observations, they model 10% of the traffc popu-
lation as cruising for parking, where vehicles may fnd a space quickly or cruise for a randomly 
sampled duration. Combining the cruising behavior with vehicles passing through and those with 
reservations creates a queue of vehicles moving through the area which contributes to total system 
travel time. The authors fnd that in their best case scenario, they are able to reduce total travel 
time by 3%. 

A third method to consider includes machine learning, specifcally a deep reinforcement 
learning algorithm as described by Zhang et al. (30). This algorithm rewards accurate parking as-
signment decisions for connected vehicles which use the reservation system while also mitigating 
for non-connected vehicles which may unexpectedly occupy an assigned parking space. The algo-
rithm is compared to several machine learning structure variants along with traditional frst-come 
frst-serve, day ahead optimal, and periodic optimal parking assignment paradigms. The authors 
see improvements in reducing the total travel time, which includes cruising and walking distance as 
the number of connected vehicles increases. Additionally, the authors study parking lot occupancy 
as another metrics to assess algorithm performance. 

METHODS 
Our research develops a model predictive control (MPC) algorithm which implements a mixed in-
teger linear program (MILP) schedule optimization formulation to assign vehicles to curb parking 
spaces. The MPC algorithm processes parking requests periodically throughout the scenario such 
that only a subset of the scenario parking requests within the current time horizon are considered 
for schedule optimization. The subset of parking requests are then input into an MILP formulation 
known as the Parking Slot Assignment Problem (PAP) which is originally derived in Roca-Riu 
et al. (31) adapted and modifed in Burns et al. (12) and further modifed in this research. This 
process is repeated at predetermined time steps throughout the scenario and in aggregate creates a 
parking schedule which contains the vehicles which were assigned parking spaces and their start 
time, parking duration, and departure time. The MPC algorithm and optimization formulation are 
discussed in more detail in the subsequent sections. 

Baseline Models 
Two baseline models of parking space assignment, frst-come frst-serve (FCFS) and full day opti-
mal, are considered in this research for comparison with our MPC algorithm. Central to all models 
is a set of vehicle parking requests where vehicles are indexed by i, and each vehicle has a requested 
arrival time window from ai to bi, a parking duration si > 0 and a latest departure time di = bi + si. 
Our frst-come frst-serve model represents a traditional parking space paradigm where vehicles 
arrive to parking spaces in an uncoordinated manner and may quickly saturate available parking 
spaces in some cases. In the FCFS model only, the actual arrival time, ti = ai ∀i. 

The second baseline model, full day optimal, assumes vehicle parking request for the en-
tire scenario are submitted prior to the start of the scenario, e.g. delivery vehicles submit parking 
request a day ahead of time, and can then be optimized and shifted to accommodate the best com-
bination of vehicles. In this model, ti may not necessarily be equal to ai ∀i. The traffc congestion 
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benefts of the full day optimal model as compared with frst-come frst-serve is explored in Burns 
et al. (12). 

Model Predictive Control (MPC) Algorithm 
The model predictive control (MPC) algorithm is generally defned by two parameters, τ and ζ , 
where τ is length of the future time horizon under consideration and ζ is the time step between the 
start of each time horizon. The MPC algorithm iterates through the scenario in ζ step increments of 
time which in one example could be every 5 minutes or some other amount of time. The time hori-
zon defnes which vehicle parking requests should be considered for schedule optimization where 
example lengths may be 30 minutes or some other time period. In our specifc implementation, we 
also create a lead time variable, ρi, which defnes the earliest time a vehicle can be considered in 
the optimization and is a proxy for the maximum length of time horizon. ρi can be heterogeneous 
for every vehicle, but we keep the variable homogeneous across vehicle types, e.g. a 30 minutes 
lead time for all vehicle requests. Also important to the MPC algorithm is the parking request 
received time, ri. In order for a request to be considered in the optimization subset both, ri and ρi 
must be ≤ the current time. An example of the MPC algorithm with vehicles assigned to different 
time horizons in shown in Figure 2. 

FIGURE 2: A visual representation of the ζ and τ parameters in the Model Predictive Control 
algorithm where ζ is the time step between the start of each time horizon and τ is the length of the 
horizon. 
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Parking Slot Assignment Optimization Formulation 
After the subset of parking requests has been determined in the MPC algorithm, the parking request 
are input into our mixed integer linear program (MILP) Parking Slot Assignment Optimization 
formulation. Our formulation was initially developed by Roca-Riu et al. (31), adapted and modifed 
in Burns et al. (12) and further updated in our current research as shown below. 
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minimize ∑ ωk fk(xw) Minimize double parking, cruising in planning horizon w 
xw k∈K 

(1) 
subject to 

∑ x0 jw ≤ n,∀w ∈ W # parallel vehicle parking sequences ≤ parking capacity (2) (j∈V 

xi jw = 0 ∀(i, j) ∈ A ,∀w ∈ W maxri,ai − ρi ≤ (twSTART), Vehicle may be considered 
(3)

∑ j∈A xi jw ≤ 1 ∀i ∈ V ,∀w ∈ W Otherwise, if in current horizon 

∑ xi jw − ∑ x jiw = 0, ∀i ∈ V ,∀w ∈ W Assigned vehicles are part of a sequence (4) 
(i, j)∈A ( j,i)∈A 

t j ≥ ti + si + ψ − (1 − xi jw)M, i, j ∈ A Prevent overlap in sequential vehicle arrivals (5) 

ti ≥ t0i, ∀i ∈ V Each arrival is not before its requested start time (6) 

ti ≤ t0i + bi, ∀i ∈ V Each arrival is not after its latest permitted start time (7) 

ti + si ≤ tEND, ∀i ∈ V Vehicle must complete service before end of scenario (8) 

∑ xi jw = ∑ xi j,w−1, (i, j) ∈ A Decisions persist across time windows considered (9) 
j∈V j∈V 

where 

xw = [ti ∀i ∈ V , xi jw ∀(i, j) ∈ A ]⊤ Decide vehicles to schedule and arrival times (10) 

ti ∈ R, ∀i ∈ V Scheduled arrival time for each vehicle (11) 

xi jw ∈ {0,1}, (i, j) ∈ A , w ∈ W 1 iff vehicle j follows i in parking sequence (12) 

fk(xw) = ∑cikβi Dbl. parking or cruising for each unscheduled vehicle (13) 
i ! 

βi = 1 − min(1, ∑ ∑ xi jw) ∀i ∈ V 0 if vehicle i is assigned a space, 1 otherwise (14) 
w∈W (i, j)∈A 

t0i = ai, ∀i ∈ V Arrival time for unscheduled vehicles (for effciency) (15) 

M = Arbitrarily large value Implement a “Big M” disjunctive constraint (16) 

twEND = twSTART + τ Defnition of the time horizon of length τ (17) 

twSTART = tw−1,START + ζ Shift time frames across optimization windows (18) 
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where i ∈ V indexes the set of vehicles (and a “depot” node i = 0 that serves as the start and end 
node of each parking sequence), (i, j) ∈ A is the set of arcs in a directed network, w ∈ W is the 
current time horizon in the set of horizons for the scenario, xi jw is a binary decision variable that 
is equal to 1 if vehicle i is scheduled immediately before vehicle j in the same parking spot in 
the current time horizon (0 otherwise), ωk is the weight of objective function k ∈ K , fk is the 
kth function given vehicle assignments β , Cik is the cost associated with either double parking or 
cruising for the ith vehicle, parking durations si and the expected value that vehicle i cruises E[R], 
or double parks E[D] if not assigned a parking space,2 ti is a continuous decision variable that 
represents the scheduled start time of vehicle i, t0i is the arrival time value used for vehicles that 
are not assigned (imposed to improve effciency), twSTART and twEND is the start and end of the 
current time horizon, ζ is the time step between time horizons, τ is the length of the time horizon, 
tSTART and tEND are the start and end of the scenario, n is the number of parking spaces, ai and bi 
are the bounds of the requested arrival time window for vehicle i, ψ is the buffer enforced between 
parking reservations, ri and ρi are defned as the request received time and the lead time before 
arrival at which a request can be assigned a parking space, and M is a “Big M” representation of a 
disjunctive constraint using an arbitrarily large number.3 

Datasets 
Our optimization formulation requires a set of vehicle parking requests which populate V , where 
each request contains the vehicle’s requested arrival time, ai, service duration, si, departure time, 
di, and the time the request was received ri. In this research we model private passenger vehicles 
and freight vehicles, both of which have different types of parking requests. Our private passenger 
vehicle data is sampled from the National Household Transportation Survey (NHTS) which con-
tains a diverse set of vehicle trips collected in 2017 US Department of Transportation and Federal 
Highway Administration (32). The freight delivery vehicle data is derived from commercial com-
pany Coord’s 2021 pilot program in Aspen, CO Coord (33) where delivery drivers were able to 
reserve specifc loading zones for their loading and unloading operations. Arrival time and service 
duration distributions for NHTS and Aspen, CO data are available in the appendix. 

Additionally, in our modelling, the objective function penalty for not assigning a parking 
space to a vehicle is either double parking for the vehicle’s service duration, si or cruising for 
an expected duration of 3 minutes. The expected cruising duration was determine based on our 
preliminary assessment of observed cruising behaviors from Chiara et al. (34), Dalla Chiara and 
Goodchild (11), and Shoup (7). 

Parameter Settings 
We explored a range of parameters in our research as described in Table 2 which resulted in 9,000 
total cases. Many of the parameters contained a range of values, while other parameters were fxed. 

For each of these cases we generated a parking schedule based on a frst-come frst-serve 
paradigm, a full day optimal formulation, and our MPC algorithm. Of note, the full day optimal 
formulation achieved optimality in 3,487 cases and the MPC algorithm achieved optimality across 

2Further description of how E[R] and E[D] is estimated is available in the appendix. 
3It should be noted that the implementation of the proposed formulation is slightly different but mathematically 

consistent. The implementation removes certain trip requests from the formulation after they are no longer relevant to 
the algorithm’s decision-making process. This involves a transformation of certain xi jw values, but reduces overhead 
when constructing the optimization problem. 
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Study Parameters* 
Parameters Values 

Vehicles per Parking Space per Hour [1, 2, 3] 
Number of Parking Spaces, n [1, 10, 20, 30, 40, 50] 
Weight Double Parking** [0, 0.25, 0.5, 0.75, 1] 
Proportion Delivery Vehicles*** [0, 0.25, 0.5, 0.75, 1] 
Time Step, ζ [2, 5] minutes 
Lead Time, ρ 30 minutes 
Buffer, ψ [1, 6] minutes 

*Full factorial exploration replicated 5x, total of 9,000 cases 
**Weight Cruising = (1 - Weight Double Parking) 
***At least one delivery and one passenger vehicle is present in each test case 

TABLE 2: Key parameters and range of values explored 

all iterations in 8,934 cases. 

PRELIMINARY RESULTS 
The below preliminary results were generated using a Mac Studio with a 24-core CPU M2 Ultra 
and 64GB of RAM running Python 3.10.11 and Gurobi 10.0.2. 

Effciency Improvements from a Dynamic Optimal Curbspace Reservation Management 
System 
To assess the effectiveness of the MPC algorithm, we collected the total minutes of double parking 
and vehicle cruising from each parking management system paradigm. From these data, we ex-
plored the reduction in both metrics when switching from a frst-come frst-serve (FCFS) to MPC 
model across our set of parameters. The preliminary results shown in Figure 3 describe the aver-
age4 reduction metrics with respect to the weight of double parking in the objective function and 
the hourly demand for parking in terms of the average number of vehicles requesting parking per 
parking space per hour. Of note, the optimization objective function assigns weights to both double 
parking and cruising penalties where the weights must sum to one. Also of note, Figure 3 does not 
include data where the objective function receives a zero weight for either double parking or cruis-
ing, e.g. the double parking graphic only contains optimization schedules which were generated 
from an objective function with a weight for double parking greater than zero, i.e. weight equal to 
[0.25, 0.5, 0.75, 1]. 

We preliminarily observe different regions and magnitudes of performance for reducing 
double parking and cruising. Double parking appears to reduced the most with an equally weight 
objective function and lower parking demand. There are also regions on Figure 3a with a negative 
reduction in double parking which indicates that frst-come frst-serve has less double parking 
than the MPC system. This is likely due to the correlations present between request lead and 
service time among passenger vehicles. In appendix, we see that shorter lead times tend to be 

4results are averaged across all parameters described in Table 2 which are not included in the primary axes, e.g. 
average over all parking space cases. 
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(a) (b) 

FIGURE 3: Reduction in double parking and cruising with respect to the objective function weight 
assigned to double parking penalties and the average hourly demand of vehicles for parking space. 
Of note, the data shown only contains simulation schedules which provides a weight greater than 
zero for either double parking or cruising, e.g. the reduction in double parking graphic only con-
tains preliminary results with weights [0.25, 0.5, 0.75, 1]. 

correlated with longer dwell times. In turn, as the algorithm iterates through the scenario it is 
more likely to receive shorter dwell time requests before longer dwell time requests. As parking 
decisions are required to be consistent over time, this could lead to reduced performance for the 
MPC algorithm. We plan to explore smaller lead time values, which should alter this behavior, in 
our future work. For cruising, we also preliminarily observe variations in performance with larger 
reductions given higher parking demand. Unlike double parking however, we do not observe 
relatively large negative reduction values. 

Additionally, we explored the reduction in double parking and cruising when differentiated 
by objective function weights as shown in Figure 4. We preliminarily observe similar behavior to 
Figure 3, where the reduction in double parking can be positive, but does have regions of large 
negative performance and the reduction in cruising appears to be primarily positive. Also of note, 
in Figure 4a, there appears to be a homogeneous impact on double parking across vehicle cases. 
In Figure 4b, however, assigning a 100% weight to cruising appears to result in heterogeneous 
performance. It is unclear what is causing this difference between double parking and cruising at 
this time, but this will be part of our future research. 

Runtime Comparison of Full Day Optimization Formulation and the MPC Algorithm 
From each of the cases explored, we recorded the runtime of the parking schedule generated from 
the full day optimization formulation and the MPC algorithm. Figure 5 displays a preliminary 
set of boxplots of the runtime for each algorithm in seconds by the average number of vehicles 
requesting a parking space per hour with an optimization solver time limit of 10 minutes. Two 
cases of the MPC were explored with different values for ζ , the time step between each time 
horizon and re-optimization. 

Preliminary results based on the median and interquartile range indicate that the MPC al-
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(a) (b) 

FIGURE 4: Preliminary observations of reduction in double parking and cruising minutes when 
comparing a frst-come frst-serve paradigm to an MPC system across the number of vehicles in the 
scenario and differentiated by objective function weight. The reduction in double parking appears 
to have regions of positive and negative reduction whereas the reduction in cruising appears to be 
positive. 

gorithm is faster across the cases we examined. While there are instances of the full day schedule 
performing quickly and on par or better with MPC algorithm, the full day optimization runtime 
tends to increase rapidly with increasing hourly demand. Additionally, many of the full day op-
timization cases hit the runtime limit of 10 minutes without converging to a solution, indicating 
even longer actual runtimes than shown in Figure 5. 

Of note, some runtimes exceed 10 minutes (600 seconds) which is due to two factors. First, 
as implemented in our simulation, the 10 minute runtime limit is only applied to the optimization 
solver and does not include any time required for additional computational overhead, but this 
additional time is included in the runtime calculator. Additionally, the MPC algorithm executes 
the optimization formulation multiple times, but the limit is only applied to a single implementation 
which allows the sum of the runtime across MPC iterations to exceed 10 minutes in some cases. 

CONCLUSIONS 
This work proposed a model-predictive control infuenced optimization formulation that allows 
for the determination of optimal parking assignments across a given scenario. We implement 
and test this formulation based on real-world data that characterizes the behavior of both delivery 
and private passenger vehicles. Generally, we preliminarily fnd that the MPC algorithm often 
underperforms in reducing double-parking relative to an intuitive base case that is frst-come frst-
serve parking assignment. However, this same algorithm is able to reduce the amount of cruising 
that would otherwise occur in in a frst-come frst-serve scenario. Additionally, we see that the 
MPC algorithm enables both faster solving across a wide variety of scenarios and makes many 
problems computationally tractable. These preliminary fndings provide potential insight into the 
contexts in which the proposed algorithm could be of most value to stakeholders such as city 
governments, local citizens, and private business. 
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FIGURE 5: Runtime comparison between the full day optimization formulation and MPC algo-
rithm. Preliminary results show that the full day schedule can resolve quickly, however the MPC 
algorithm generally tends to have faster runtime across the average number of vehicles requesting 
parking per parking space per hour. Of note, the optimization solver runtime was limited in each 
case to 10 minutes (600 seconds), however this did not include additional time required to store 
variables in memory or the sum of the successive optimization iterations in the MPC algorithm. 
As a result, runtime observations can exceed the 10 minute threshold. 

FUTURE WORK 
Our future research intends to further characterize the performance of the MPC algorithm rela-
tive to the full day optimal and frst-come frst-serve parking schedules. This includes additional 
parameter exploration of the reservation lead time, ρ , objective weighting, and an increased reso-
lution and range of the hourly parking demand per parking space. We also hope to explore larger 
parking space cases which we believe will be uniquely tractable with the MPC algorithm. Further 
advancements in our modeling may also include parking requests from ride-hailing vehicles along 
with different requests for freight and parcel vehicles. 

ACKNOWLEDGEMENTS 
This project is funded in part by Carnegie Mellon University’s Mobility21 National University 
Transportation Center, which is sponsored by the US Department of Transportation. The funding 
is associated with agreement #397. Thank you to Professor Sean Qian for his guidance on parking 
behaviors and impacts on the surrounding environment. 



16 Burns, Forsythe, Michalek and Whitefoot 

APPENDIX 
NHTS Distributions 
One of the primary datasets used in the construction of parking requests is the 2017 National 
Household Travel Survey (NHTS) US Department of Transportation and Federal Highway Ad-
ministration (32). NHTS contains travel diaries for a nationally representative set of Americans. 
Although the dataset is nationally representative, we use a particular subset of data relevant to our 
context of interest. We leverage data for trips that are made in urban areas, to non-home or primary 
work locations, by light-duty passenger vehicles or rental vehicles, and the entirety of the trip is 
made during the hours of 7AM to 6PM. This dataset contains information on several aspects of 
any given trip such as travel time, dwell time, reason for travel, and many others. In this context, 
we pay particular attention to both travel times and dwell times. Specifcally, we use travel times 
as a proxy for the time before arrival that a parking request is made, and dwell time serves as a 
proxy for parking request length. A two-way histogram showing the relationship between travel 
and dwell time is shown in Figure 6. 

FIGURE 6: Two-way histogram showing the bivariate distribution of travel and dwell times US 
Department of Transportation and Federal Highway Administration (32). Note, axes do not cover 
full range of data to improve interpretability. 

The NHTS dataset is leverage as an empirical distribution used to construct instantiations of 
a given parking day. Specifcally, each scenario (or day) that the algorithm optimizes is constructed 
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of a given number of parking requests. Those parking requests are constructed by random sampling 
with replacement of the relevant NHTS trip dataset. 

Aspen Distributions 
The Aspen, CO dataset is derived from empirical data collected by commercial company Coord 
over the frst 100 days of their Smart Zone pilot program in Aspen, CO, from November 2020 
through January 2021 (33). The pilot program implemented a loading zone reservation system for 
a set of curbside and alley commercial loading zones and supported 1520 parking sessions. Using 
the Aspen dataset, which provides data at an hourly resolution, we determined the set of requested 
vehicle arrival times a by sampling the empirical frequency distribution for vehicle arrivals by 
hour and adding a random value uniformly drawn from between 0 and 60 minutes. The empirical 
distribution is shown in Figure 7. 

FIGURE 7: The distribution of freight vehicle arrivals from Coord’s reservable loading zone pilot 
program in Aspen, CO (33). 

For service duration s, we sampled from a normal distribution with a heterogeneous mean 
parameter dependent on the hour of the vehicle arrival as provided by Coord (33) and shown in 
Figure 8. 

We are, however, missing data on the variance associated with each of the average ser-
vice duration data points, so we follow (31) in assuming a standard deviation of fve minutes for 
each hour (based on empirical observations of Barcelona, Spain in 1997). Even though this is 
an older data source, we believe that fve minutes is a reasonable estimate that can be explored 
through future sensitivity analysis. Of note, ai,si are each rounded to the nearest integer for easier 
interpretation of the optimization results. 
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FIGURE 8: The distribution of freight vehicle parking duration from Coord’s reservable loading 
zone pilot program in Aspen, CO (33). 

Street-Sense Data 
For our research we also leverage data collected by Street Sense Inc. and their camera monitoring 
system on Liberty Ave in downtown Pittsburgh from September to November of 2021. Over this 
period, Street Sense Inc. used a machine learning image classifcation system to characterize more 
than 6500 cars and 500 trucks both parked legally in parking spaces and illegally double parked 
in a lane of traffc. Each parking event is described by the vehicle arrival and departure time and 
whether or not the vehicle was double parked in a lane of traffc or legally parked in a parking 
space. 

Using these data, we are able to construct a simple method of estimating the probability 
that an individual vehicle will double-park or cruise when a parking spot is not available to them 
upon arrival. We construct our estimate of double-parking probability using the number of vehicles 
who have double parked for a given amount of time and in total. Equation (19) shows the specifc 
formulation. Intuitively, the probability that a vehicle with a parking request t seconds long will 
double park is equal to the proportion of vehicles double parked at least as long as t seconds 
among all double-parked vehicles. We then assume that the only other alternative is cruising, so 
the probability of cruising is equal to one minus the probability to double park. 

# of Vehicles Double Parked for Duration ≥ t
P(Double parking with service duration t) = (19)

Total # of Double Parked Vehicles 
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FIGURE 9: Double parking probability values with respect to dwell time. 
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